Induced Monocytes-Derived HSCs (CD34+) with LPS Accelerated Homing Rat Bone Marrow-Mesenchymal Stem Cell (BM-MSCs, CD105) in Injured Pancreas

نویسنده

  • Fedik A. Rantam
چکیده

Investigating the function of combining induced rat monocytes-derived bone marrow-haemopoietic stem cell (rat BM-HSCs) with LPS and rat bone marrow-mesenchymal stem cell (rat BM-MSCs) was to analyze the acceleration of homing process mechanism in injured pancreas. Mononucleated stem cells were isolated from aspirated whole rat BM using ficoll and cultured in α-MEM complete growth medium in 10 cm petridish. After two days, adherent cells after washing twice in petridish were added α-MEM growth medium and then mesenchymal cells were characterized using CD105 marker in third passage and labeled PKH26. Then haemopoietic stem cells (HSCs) were isolated with magnetic beads CD34+ and differentiated in vitro, and then induced monocytes with LPS. Animal experiment used 28 male Wistar rats, and divided them into 4 groups. After transplantation combined, both cells between monocyte derived HSc (mHSCs) and rat BM-MSC were analyzed expression of pair box gen 4 (Pax4), pancreatic and duodenal homeobox (Pdx1), C-peptide using immunohistochemistry, then secretion of insulin and C-peptide analyzed using in-direct ELISA. Results showed that the expressions of Pax4, Pdx1, C-peptide found in the surface membrane cell

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs. Materials and Methods: In this study, 4-5 different units o...

متن کامل

Histomorphometric evaluation of treatment of rat azoosper-mic seminiferous tubules by allotransplantation of bone marrow-derived mesenchymal stem cells

Objective(s): Bone marrow-derived mesenchymal stem cells (BM-MSCs) potentials make them appropriate for cell therapy including ability of differentiation and release of anti-inflammatory cytokines and growth factors secreta. For treatment of azoospermia to induce proliferation and differentiation of germ cells, MSCs transplantation has been introduced. The aim of the present experimental case-c...

متن کامل

Chemically primed bone-marrow derived mesenchymal stem cells show enhanced expression of chemokine receptors contributed to their migration capability

Objective(s):The limited homing potential of bone-marrow-derived mesenchymal stem cells (BM-MSC) is the key obstacle in MSC-based therapy. It is believed that chemokines and chemokine receptor interactions play key roles in cellular processes associated with migration. Meanwhile, MSCs express a low level of distinct chemokine receptors and they even lose these receptors on their surface after a...

متن کامل

Harvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells

In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...

متن کامل

Emergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract

Objective(s): Nowadays much effort is being invested in order to diagnose the mechanisms involved in neural differentiation. By clarifying this, making desired neural cells in vitro and applying them into diverse neurological disorders suffered from neural cell malfunctions could be a feasible choice. Thus, the present study assessed the capability of fetal brain extract (FBE) to induce rat bon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015